RFC 1586 (rfc1586) - Page 1 of 6


Guidelines for Running OSPF Over Frame Relay Networks



Alternative Format: Original Text Document



Network Working Group                                         O. deSouza
Request for Comments: 1586                                  M. Rodrigues
Category: Informational                           AT&T Bell Laboratories
                                                              March 1994


                      Guidelines for Running OSPF
                       Over Frame Relay Networks

Status of this Memo

   This memo provides information for the Internet community.  This memo
   does not specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

Abstract

   This memo specifies guidelines for implementors and users of the Open
   Shortest Path First (OSPF) routing protocol to bring about
   improvements in how the protocol runs over frame relay networks.  We
   show how to configure frame relay interfaces in a way that obviates
   the "full-mesh" connectivity required by current OSPF
   implementations. This allows for simpler, more economic network
   designs.  These guidelines do not require any protocol changes; they
   only provide recommendations for how OSPF should be implemented and
   configured to use frame relay networks efficiently.

Acknowledgements

   This memo is the result of work done in the OSPF Working Group of the
   IETF.  Comments and contributions from several sources, especially
   Fred Baker of ACC, John Moy of Proteon, and Bala Rajagopalan of AT&T
   Bell Laboratories are included in this work.

1.  Introduction

   A frame relay (FR) network provides virtual circuits (VCs) to
   interconnect attached devices. Each VC is uniquely identified at each
   FR interface by a Data Link Connection Identifier (DLCI).  RFC 1294
   specifies the encapsulation of multiprotocol traffic over FR [1].
   The devices on a FR network may either be fully interconnected with a
   "mesh" of VCs, or partially interconnected.  OSPF characterizes FR
   networks as non-broadcast multiple access (NBMA) because they can
   support more than two attached routers, but do not have a broadcast
   capability [2].  Under the NBMA model, the physical FR interface on a
   router corresponds to a single OSPF interface through which the
   router is connected to one or more neighbors on the FR network; all
   the neighboring routers must also be directly connected to each other



deSouza & Rodrigues