RFC 2627 (rfc2627) - Page 2 of 23


Key Management for Multicast: Issues and Architectures



Alternative Format: Original Text Document



RFC 2627             Key Management for Multicast              June 1999


   multicast communication being that multiple receivers simultaneously
   get the same transmission.  Thus the problem is enabling each user to
   determine/obtain the same net key without permitting unauthorized
   parties to do likewise (initializing the multicast group) and
   securely rekeying the users of the multicast group when necessary.
   At first glance, this may not appear to be any different than current
   key management scenarios.  This paper will show, however, that future
   multicast scenarios will have very divergent and dynamically changing
   requirements which will make it very challenging from a key
   management perspective to address.

2.0  INTRODUCTION

   The networks of the future will be able to support gigabit bandwidths
   for individual users, to large groups of users.  These users will
   possess various quality of service options and multimedia
   applications that include video, voice, and data, all on the same
   network backbone.  The desire to create small groups of users all
   interconnected and capable of communicating with each other, but who
   are securely isolated from all other users on the network is being
   expressed strongly by users in a variety of communities.

   The key management infrastructure must support bandwidths ranging
   from kilobits/second to gigabits/second, handle a range of multicast
   group sizes, and be flexible enough for example to handle such
   communications environments as wireless and mobile technologies.  In
   addition to these performance and communications requirements, the
   security requirements of different scenarios are also wide ranging.
   It is required that users can be added and removed securely and
   efficiently, both individually and in bulk.  The system must be
   resistant to compromise, insofar as users who have been dropped
   should not be able to read any subsequent traffic, even if they share
   their secret information.  The costs we seek to minimize are time
   required for setup, storage space for each end user, and total number
   of transmissions required for setup, rekey and maintenance.  It is
   also envisioned that any proposed multicast security mechanisms will
   be implemented no lower than any layer with the characteristics of
   the network layer of the protocol stack.  Bandwidth efficiency for
   any key management system must also be considered.  The trade-off
   between security and performance of the entire multicast session
   establishment will be discussed in further detail later in this
   document.









Wallner, et al.              Informational