RFC 2686 (rfc2686) - Page 2 of 11
The Multi-Class Extension to Multi-Link PPP
Alternative Format: Original Text Document
RFC 2686 The Multi-Class Extension to Multi-Link PPP September 1999
required as, e.g., a 1500 byte packet on a 28.8 kbit/s modem link
makes this link unavailable for the transmission of real-time
information for about 400 ms. This adds a worst-case delay that
causes real-time applications to operate with round-trip delays on
the order of at least a second -- unacceptable for real-time
conversation. The PPP extensions defined in this document allow a
sender to fragment the packets of various priorities into multiple
classes of fragments, allowing high-priority packets to be sent
between fragments of lower priorities.
A companion document based on these extensions [5] defines a
suspend/resume-oriented solution for those cases where the best
possible delay is required and the senders are of type 1 [1].
1.1. Specification Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [8].
2. Requirements
The main design goal for the components of an architecture that
addresses real-time multimedia flows over low-bitrate links is that
of minimizing the end-to-end delay. More specifically, the worst
case delay (after removing possible outliers, which are equivalent to
packet losses from an application point of view) is what determines
the playout points selected by the applications and thus the delay
actually perceived by the user.
In addition, every attempt should obviously be undertaken to maximize
the bandwidth actually available to media data; overheads must be
minimized.
The solution should not place unnecessary burdens on the non-real-
time flows. In particular, the usual MTU should be available to
these flows.
The most general approach would provide the ability to suspend any
packet (real-time or not) for a more urgent real-time packet, up to
an infinite number of levels of nesting. On the other hand, it is
likely that there would rarely be a requirement for a real-time
packet to suspend another real-time packet that is not at least about
twice as long. Typically, the largest packet size to be expected on
a PPP link is the default MTU of 1500 bytes. The smallest high-
priority packets are likely to have on the order of 22 bytes
(compressed RTP/G.723.1 packets). In the 1:72 range of packet sizes
to be expected, this translates to a maximum requirement of about
Bormann Standards Track