RFC 3378 (rfc3378) - Page 1 of 9


EtherIP: Tunneling Ethernet Frames in IP Datagrams



Alternative Format: Original Text Document



Network Working Group                                         R. Housley
Request for Comments: 3378                              RSA Laboratories
Category: Informational                                    S. Hollenbeck
                                                          VeriSign, Inc.
                                                          September 2002


           EtherIP: Tunneling Ethernet Frames in IP Datagrams

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Abstract

   This document describes the EtherIP, an early tunneling protocol, to
   provide informational and historical context for the assignment of IP
   protocol 97.  EtherIP tunnels Ethernet and IEEE 802.3 media access
   control frames in IP datagrams so that non-IP traffic can traverse an
   IP internet.  The protocol is very lightweight, and it does not
   provide protection against infinite loops.

1. Introduction

   EtherIP was first designed and developed in 1991.  This document was
   written to document the protocol for informational purposes and to
   provide historical context for the assignment of IP protocol 97 by
   IANA.

   The IETF Layer Two Tunneling Protocol Extensions (L2TPEXT) Working
   Group and IETF Pseudo Wire Emulation Edge-to-Edge (PWE3) Working
   Group are developing protocols that overcome the deficiencies of
   EtherIP.  In general, the standards track protocols produced by these
   IETF working groups should be used instead of EtherIP.

   The EtherIP protocol is used to tunnel Ethernet [DIX] and IEEE 802.3
   [CSMA/CD] media access control (MAC) frames (including IEEE 802.1Q
   [VLAN] datagrams) across an IP internet.  Tunneling is usually
   performed when the layer three protocol carried in the MAC frames is
   not IP or when encryption obscures the layer three protocol control
   information needed for routing.  EtherIP may be implemented in an end
   station to enable tunneling for that single station, or it may be
   implemented in a bridge-like station to enable tunneling for multiple
   stations connected to a particular local area network (LAN) segment.





Housley & Hollenbeck         Informational