# RFC 3385 (rfc3385) - Page 2 of 23

### Internet Protocol Small Computer System Interface (iSCSI) Cyclic Redundancy Check (CRC)/Checksum Considerations

Alternative Format: Original Text Document

```RFC 3385                iSCSI CRC Considerations          September 2002

developers for many years.  However, algorithms and software for
effective implementations of CRC are now also widely available
[Williams].

The probability of undetected errors depends on the polynomial
selected to generate the code, the error distribution (error model),
and the data length.

2. Error Models and Goals

We will analyze the code behavior under two conditions:

- noisy channel - burst errors with an average length of n bits
- low noise channel - independent single bit errors

Burst errors are the prevalent natural phenomenon on communication
lines and recording media.  The numbers quoted for them revolve
around the BER (bit error rate).  However, those numbers are
frequently nothing more than a reflection of the Burst Error Rate
multiplied by the average burst length.  In field engineering tests,
three numbers are usually quoted together -- BER, error-free-seconds
and severely-error-seconds; this illustrates our point.

Even beyond communication and recording media, the effects of errors
will be bursty.  An example of this is a memory error that will
affect more than a single bit and the total effect will not be very
different from the communication error, or software errors that occur
while manipulating packets will have a burst effect.  Software errors
also result in burst errors.  In addition, serial internal
interconnects will make this type of error the most common within
machines as well.

We also analyze the effects of single independent bit errors, since
these may be caused by certain defects.

On burst, we assume an average burst error duration of bd, which at a
given transmission rate s, will result in an average burst of a =
bd*s bits.  (E.g., an average burst duration of 3 ns at 1Gbs gives an
average burst of 3 bits.)

For the burst error rate, we will take 10^-10.  The numbers quoted
for BER on wired communication channels are between 10^-10 to 10^-12
and we consider the BER as burst-error-rate*average-burst-length.
Nevertheless, please keep in mind that if the channel includes
wireless links, the error rates may be substantially higher.

For independent single bit errors, we assume a 10^-11 error rate.

Sheinwald, et. al.           Informational```