RFC 1371 (rfc1371) - Page 2 of 9
Choosing a Common IGP for the IP Internet
Alternative Format: Original Text Document
RFC 1371 Choosing a "Common IGP" October 1992
Table of Contents
1. Background .................................................... 2
2. Multiple Internet Standard Routing Protocols Possible ......... 3
3. A Common IGP .................................................. 3
4. Impact of Multi-protocol Topology and Integrated IP/CLNP Routing 3
5. Commitment to Both IP and CLNP ................................ 5
6. Some History .................................................. 5
7. IESG Recommendations .......................................... 6
7.1 Regarding the Common IGP for the IP Internet ................. 6
7.2 Regarding Integrated IP/CLNP Routing ......................... 7
7.3 Limits of the Common IGP Recommendation ...................... 7
8. References .................................................... 8
9. Security Considerations ....................................... 9
10. Author's Address ............................................. 9
1. Background
There is a pressing need for a high functionality non-proprietary
"common" Interior Gateway Protocol (IGP) for the TCP/IP protocol
family. An IGP is the routing protocol used within a single
administrative domain (commonly referred to as an "Autonomous System"
(AS).
By "common", we simply mean a protocol that is ubiquitously available
from all router vendors (as in "in common"). Users and network
operators have expressed a strong need for routers from different
vendors to have the capablity to interoperate within an AS through
use of a common IGP.
Note: Routing between AS's is handled by a different type of routing
protocol, called an "Exterior Gateway Protocol" ("an EGP", of which
the Border Gateway Protocol [2] and "The Exterior Gateway Protocol"
[3] are examples.) The issues of routing between AS's using "an" EGP
is not considered in this memo.
There are two IGPs in the Internet standards track capable of routing
IP traffic -- Open Shortest Path First (OSPF) [4] and Integrated IS-
IS [5] (based on the OSI IS-IS). These two protocols are both modern
"link state" routing protocols, based on the Dijkstra algorithm.
There has been substantial interaction and cooperation among the
engineers involved in each effort, and the protocols share some
similar features.
However, there are a number of technical design differences. Most
noteably, OSPF has been designed solely for support of the Internet
Protocol (IP), while Integrated IS-IS has been designed to support
both IP and the OSI Connectionless Network Layer Protocol (CLNP)
IESG