RFC 3528 (rfc3528) - Page 3 of 15


Mesh-enhanced Service Location Protocol (mSLP)



Alternative Format: Original Text Document



RFC 3528     Mesh-enhanced Service Location Protocol (mSLP)   April 2003


1.2. Terminology

   Peer DAs (or Peers)
      DAs that share one or multiple scopes are peers.

   Peering Connection
      A persistent connection (e.g., TCP) that provides reliable and
      ordered transfers between two peers.  The closing of a peering
      connection terminates the peer relationship.

   Mesh-enhanced DA (MDA)
      An MDA carries the "mesh-enhanced" attribute keyword in its DA
      Advertisement (DAAdvert) message, maintains peering connections to
      all peers, and properly interacts with peers.

   Mesh-enhanced SA (MSA)
      An MSA uses the Mesh Forwarding extension (Section 4.3) when it
      registers with MDAs.

   Registration Update
      A registration update refers to a Service Registration (SrvReg) or
      Service Deregistration (SrvDeReg) message.

   Registration State
      A registration state refers to an entry in the registration
      database.

   Accept DA
      When a DA accepts a registration update from an SA, the DA is the
      accept DA for the update.

   Accept Timestamp
      The arrival timestamp of a registration update at its accept DA is
      the accept timestamp of the update.  All accept timestamps
      assigned by the same DA MUST be monotonically increasing.

   Version Timestamp
      When an MSA sends a registration update to an MDA, the MSA assigns
      a version timestamp to the update.  All version timestamps
      assigned by the same MSA MUST be monotonically increasing.

1.3. Compatibility

   mSLP is designed as a lightweight enhancement to SLPv2.  It is
   backward compatible with SLPv2.  mSLP defines two enhanced entities:
   MDAs and MSAs.  They can be deployed incrementally.  An enhanced
   entity supports extended operations without affecting its original
   functionality as defined in RFC 2608 [RFC 2608].  For simplicity and



Zhao, et al.                  Experimental