RFC 1114 (rfc1114) - Page 3 of 25
Privacy enhancement for Internet electronic mail: Part II - certificate-based key management
Alternative Format: Original Text Document
RFC 1114 Mail Privacy: Key Management August 1989
later in this RFC. RSADSI will offer a service in which it will sign
a certificate which has been generated by a user and vouched for
either by an organization or by a Notary Public. This service will
carry a $25 biennial fee which includes an associated license to use
the RSA algorithm in conjunction with privacy protection of
electronic mail. Users who do not come under the purview of the RSA
patent, e.g., users affiliated with the U.S. government or users
outside of the U.S., may make use of different certifying authorities
and will not require a license from RSADSI. Procedures for
interacting with these other certification authorities, maintenance
and distribution of revoked certificate lists from such authorities,
etc. are outside the scope of this RFC. However, techniques for
validating certificates issued by other authorities are contained
within the RFC to ensure interoperability across the resulting
jurisdictional boundaries.
2. Overview of Approach
This RFC defines a key management architecture based on the use of
public-key certificates, in support of the message encipherment and
authentication procedures defined in RFC-1113. In the proposed
architecture, a "certification authority" representing an
organization applies a digital signature to a collection of data
consisting of a user's public component, various information that
serves to identify the user, and the identity of the organization
whose signature is affixed. (Throughout this RFC we have adopted the
terms "private component" and "public component" to refer to the
quantities which are, respectively, kept secret and made publically
available in asymmetric cryptosystems. This convention is adopted to
avoid possible confusion arising from use of the term "secret key" to
refer to either the former quantity or to a key in a symmetric
cryptosystem.) This establishes a binding between these user
credentials, the user's public component and the organization which
vouches for this binding. The resulting signed, data item is called
a certificate. The organization identified as the certifying
authority for the certificate is the "issuer" of that certificate.
In signing the certificate, the certification authority vouches for
the user's identification, especially as it relates to the user's
affiliation with the organization. The digital signature is affixed
on behalf of that organization and is in a form which can be
recognized by all members of the privacy-enhanced electronic mail
community. Once generated, certificates can be stored in directory
servers, transmitted via unsecure message exchanges, or distributed
via any other means that make certificates easily accessible to
message originators, without regard for the security of the
transmission medium.
Kent & Linn