RFC 1382 (rfc1382) - Page 2 of 69
SNMP MIB Extension for the X
Alternative Format: Original Text Document
RFC 1382 X.25 Packet Layer MIB November 1992
7. References ............................................. 67
8. Security Considerations ................................ 68
9. Author's Address ....................................... 69
1. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. These components give the rules for defining objects,
the definitions of objects, and the protocol for manipulating
objects.
The network management framework structures objects in an abstract
information tree. The branches of the tree name objects and the
leaves of the tree contain the values manipulated to effect
management. This tree is called the Management Information Base or
MIB. The concepts of this tree are given in STD 16/RFC 1155, "The
Structure of Management Information" or SMI [1]. The SMI defines the
trunk of the tree and the types of objects used when defining the
leaves. STD 16/RFC 1212, "Towards Concise MIB Definitions" [4],
defines a more concise description mechanism that preserves all the
principals of the SMI.
The core MIB definitions for the Internet suite of protocols can be
found in RFC 1156 [2] "Management Information Base for Network
Management of TCP/IP-based internets". STD 17/RFC 1213 [5] defines
MIB-II, an evolution of MIB-I with changes to incorporate
implementation experience and new operational requirements.
STD 15/RFC 1157 [3] defines the SNMP protocol itself. The protocol
defines how to manipulate the objects in a remote MIB.
The tree structure of the MIB allows new objects to be defined for
the purpose of experimentation and evaluation.
2. Objects
The definition of an object in the MIB requires an object name and
type. Object names and types are defined using the subset of
Abstract Syntax Notation One (ASN.1) [6] defined in the SMI [1].
Objects are named using ASN.1 object identifiers, administratively
assigned names, to specify object types. The object name, together
with an optional object instance, uniquely identifies a specific
instance of an object. For human convenience, we often use a textual
string, termed the OBJECT DESCRIPTOR, to also refer to objects.
Objects also have a syntax that defines the abstract data structure
corresponding to that object type. The ASN.1 language [6] provides
the primitives used for this purpose. The SMI [1] purposely
Throop