RFC 1490 (rfc1490) - Page 3 of 35
Multiprotocol Interconnect over Frame Relay
Alternative Format: Original Text Document
RFC 1490 Multiprotocol over Frame Relay July 1993
|--- octet one ---|--- octet two ---|
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
+--------------------------------------------+
| Organizationally Unique |
+-- +--------------------+
| Identifier | Protocol |
+-----------------------+--------------------+
| Identifier |
+-----------------------+
The following are common acronyms used throughout this document.
BECN - Backward Explicit Congestion Notification
BPDU - Bridge Protocol Data Unit
C/R - Command/Response bit
DCE - Data Communication Equipment
DE - Discard Eligibility bit
DTE - Data Terminal Equipment
FECN - Forward Explicit Congestion Notification
PDU - Protocol Data Unit
PTT - Postal Telephone & Telegraph
SNAP - Subnetwork Access Protocol
2. Introduction
The following discussion applies to those devices which serve as end
stations (DTEs) on a public or private Frame Relay network (for
example, provided by a common carrier or PTT. It will not discuss
the behavior of those stations that are considered a part of the
Frame Relay network (DCEs) other than to explain situations in which
the DTE must react.
The Frame Relay network provides a number of virtual circuits that
form the basis for connections between stations attached to the same
Frame Relay network. The resulting set of interconnected devices
forms a private Frame Relay group which may be either fully
interconnected with a complete "mesh" of virtual circuits, or only
partially interconnected. In either case, each virtual circuit is
uniquely identified at each Frame Relay interface by a Data Link
Connection Identifier (DLCI). In most circumstances, DLCIs have
strictly local significance at each Frame Relay interface.
The specifications in this document are intended to apply to both
switched and permanent virtual circuits.
Bradley, Brown & Malis