RFC 2815 (rfc2815) - Page 2 of 17
Integrated Service Mappings on IEEE 802 Networks
Alternative Format: Original Text Document
RFC 2815 Int-Serv Mappings on IEEE 802 Networks May 2000
Table of Contents
1 Introduction ............................................... 2
2 Flow Identification and Traffic Class Selection ............ 3
3 Choosing a flow's IEEE 802 user_priority class ............. 5
3.1 Context of admission control and delay bounds ............ 6
3.2 Default service mappings ................................. 7
3.3 Discussion ............................................... 9
4 Computation of integrated services characterization parameters
by IEEE 802 devices .....................................10
4.1 General characterization parameters ......................10
4.2 Parameters to implement Guaranteed Service ...............11
4.3 Parameters to implement Controlled Load ..................11
4.4 Parameters to implement Best Effort ......................12
5 Merging of RSVP/SBM objects ................................12
6 Applicability of these service mappings ....................13
7 References .................................................14
8 Security Considerations ....................................15
9 Acknowledgments ............................................15
10 Authors' Addresses ........................................16
11 Full Copyright Statement ..................................17
1. Introduction
The IEEE 802.1 Interworking Task Group has developed a set of
enhancements to the basic MAC Service provided in Bridged Local Area
Networks (a.k.a. "switched LANs"). As a supplement to the original
IEEE MAC Bridges standard, IEEE 802.1D-1990 [802.1D-ORIG], the
updated IEEE 802.1D-1998 [802.1D] proposes differential traffic class
queuing in switches. The IEEE 802.1Q specification [802.1Q] extends
the capabilities of Ethernet/802.3 media to carry a traffic class
indicator, or "user_priority" field, within data frames.
The availability of this differential traffic queuing, together with
additional mechanisms to provide admission control and signaling,
allows IEEE 802 networks to support a close approximation of the IETF
Integrated Services capabilities [CL][GS]. This document describes
methods for mapping the service classes and parameters of the IETF
model into IEEE 802.1D network parameters. A companion document
[SBM] describes a signaling protocol for use with these mappings. It
is recommended that readers be familiar with the overall framework in
which these mappings and signaling protocol are expected to be used;
this framework is described fully in [IS802FRAME].
Within this document, Section 2 describes the method by which end
systems and routers bordering the IEEE Layer-2 cloud learn what
traffic class should be used for each data flow's packets. Section 3
describes the approach recommended to map IP-level traffic flows to
Seaman, et al. Standards Track