RFC 3175 (rfc3175) - Page 2 of 36
Aggregation of RSVP for IPv4 and IPv6 Reservations
Alternative Format: Original Text Document
RFC 3175 RSVP Reservation Aggregation September 2001
an "aggregation region" (defined below) where each aggregate
reservation carries similarly marked packets from a large number of
flows. This is to provide high levels of assurance that the end-to-
end requirements of reserved flows will be met, while at the same
time enabling reservation state to be aggregated.
Throughout, we will talk about "Aggregator" and "Deaggregator",
referring to the routers at the ingress and egress edges of an
aggregation region. Exactly how a router determines whether it
should perform the role of aggregator or deaggregator is described
below.
We will refer to the individual reserved sessions (the sessions we
are attempting to aggregate) as "end-to-end" reservations ("E2E" for
short), and to their respective Path/Resv messages as E2E Path/Resv
messages. We refer to the the larger reservation (that which
represents many E2E reservations) as an "aggregate" reservation, and
its respective Path/Resv messages as "aggregate Path/Resv messages".
1.1. Problem Statement: Aggregation Of E2E Reservations
The problem of many small reservations has been extensively
discussed, and may be summarized in the observation that each
reservation requires a non-trivial amount of message exchange,
computation, and memory resources in each router along the way. It
would be nice to reduce this to a more manageable level where the
load is heaviest and aggregation is possible.
Aggregation, however, brings its own challenges. In particular, it
reduces the level of isolation between individual flows, implying
that one flow may suffer delay from the bursts of another.
Synchronization of bursts from different flows may occur. However,
there is evidence [CSZ] to suggest that aggregation of flows has no
negative effect on the mean delay of the flows, and actually leads to
a reduction of delay in the "tail" of the delay distribution (e.g.,
99% percentile delay) for the flows. These benefits of aggregation
to some extent offset the loss of strict isolation.
1.2. Proposed Solution
The solution we propose involves the aggregation of several E2E
reservations that cross an "aggregation region" and share common
ingress and egress routers into one larger reservation from ingress
to egress. We define an "aggregation region" as a contiguous set of
systems capable of performing RSVP aggregation (as defined following)
along any possible route through this contiguous set.
Baker, et al. Standards Track