RFC 1453 (rfc1453) - Page 2 of 10
A Comment on Packet Video Remote Conferencing and the Transport/Network Layers
Alternative Format: Original Text Document
RFC 1453 Comments on Video Conferencing April 1993
for such an integrated control scheme.
2. Remote Conferencing
The challenges of remote conferencing is an application whose
challenges may be met at the data link layer by the emerging
broadband networks. If so, important medical applications such as
medical imaging for diagnosis and treatment planning would be
possible [CHIM92]. Remote conferencing would permit imaging
applications for life sciences through the use of national resource
centers. Collaboratory conferences in molecular modeling, design
efforts, and visualization of data in numerous disciplines could
become possible.
At the Second Packet Video Workshop, held December, 1992, at MCNC in
the Research Triangle Park, North Carolina, a recurrent theme was the
use of multimedia in remote conferencing. Its applications included
the use of interactive, synchronized voice and video transmission,
multicast transmission, data transfer, graphics transmission,
noninteractive video and audio transmission, and data base query
within a virtually shared workspace. A few participants doubted the
ability of current computer networks to handle these multimedia
applications and preferred only connection-oriented, circuit-switched
services. Most participants, however, looked forward to using an
integrated network approach.
2.1. Remote Conferencing Functions and Requirements
Remote conferencing as seen at the workshop requires a set of
functions. It must provide session scheduling that deals with
initiating a session, joining in-progress sessions, leaving a session
without tearing it down if there are multiple participants, and
terminating a session.
The remote-conferencing session needs a control subsystem that is
either tightly controlled for an n-to-n connection for two to 15
participants, or loosely controlled for a 1-to-n connection for any
number of participants. The Multipeer-Multicast Consortium is
working on defining the control requirements and the mechanisms for
control. At the Packet Video Workshop, one participant presented a
conference control protocol (CCP) shown in Figure 1 [CCP92]. In this
architecture the CCP controls the Network Voice Protocol (NVP)
[RFC 741] and the Packet Video Protocol (PVP) [PVP81] over the
experimental Internet Stream Protocol, Version 2 (ST-II) [RFC 1190]
rather than IP.
Latency and intramedia synchronization and intermedia synchronization
(lip-sync) are critical for the interactive voice and video streams
Chimiak