RFC 1667 (rfc1667) - Page 2 of 7
Modeling and Simulation Requirements for IPng
Alternative Format: Original Text Document
RFC 1667 Modeling and Simulation Requirements for IPng August 1994
This paper is intended to serve as input to the IPng design effort by
specifying the network-layer requirements of Defense Modeling and
Simulation (M&S) applications. It is important that the M&S community
make its unique requirements clear to IPng designers so that
mechanisms for meeting these requirements can be considered as
standard features for IPng. The intention is to make IPng's benefits
of wide COTS availability, multi-vendor interoperability, and cost-
effectiveness fully available to the M&S community.
2. Background: Overview of Distributed Interactive Simulation
The Defense Modeling and Simulation community requires an integrated,
wide-area, wideband internetwork to perform Distributed Interactive
Simulation (DIS) exercises among remote, dissimilar simulation
devices located at worldwide sites. The network topology used in
current M&S exercises is typically that of a high-speed cross-country
and trans-oceanic backbone running between wideband packet switches,
with tail circuits running from these packet switches to various
nearby sites. At any given site involved in an exercise, there may be
several internetworked local area networks on which numerous
simulation entity hosts are running. Some of these hosts may be
executing computer-generated semi-automated forces, while others may
be manned simulators. The entire system must accommodate delays and
delay variance compatible with human interaction times in order to
preserve an accurate order of events and provide a realistic combat
simulation. While the sites themselves may be geographically distant
from one another, the simulation entities running at different sites
may themselves be operating and interacting as though they are in
close proximity to one another in the battlefield. Our goal is that
all of this can take place in a common network that supports all
Defense modeling and simulation needs, and hopefully is also shared
with other Defense applications.
In a typical DIS exercise, distributed simulators exchange
information over an internetwork in the form of standardized protocol
data units (PDUs). The DIS protocols and PDU formats are currently
under development. The first generation has been standardized as
IEEE 1278.1 and used for small exercises (around 100 hosts), and
development of a second generation is underway. The current
Communications Architecture for DIS specifies use of Internet
protocols.
The amount, type, and sensitivity level of information that must be
exchanged during a typical DIS exercise drives the communications
requirements for that exercise, and depends on the number and type of
participating entities and the nature and level of interaction among
those entities. Future DIS exercises now in planning extend to
hundreds of sites and tens of thousands of simulation platforms
Symington, Wood & Pullen