RFC 2104 (rfc2104) - Page 2 of 11
HMAC: Keyed-Hashing for Message Authentication
Alternative Format: Original Text Document
RFC 2104 HMAC February 1997
HMAC can be used in combination with any iterated cryptographic hash
function. MD5 and SHA-1 are examples of such hash functions. HMAC
also uses a secret key for calculation and verification of the
message authentication values. The main goals behind this
construction are
* To use, without modifications, available hash functions.
In particular, hash functions that perform well in software,
and for which code is freely and widely available.
* To preserve the original performance of the hash function without
incurring a significant degradation.
* To use and handle keys in a simple way.
* To have a well understood cryptographic analysis of the strength of
the authentication mechanism based on reasonable assumptions on the
underlying hash function.
* To allow for easy replaceability of the underlying hash function in
case that faster or more secure hash functions are found or
required.
This document specifies HMAC using a generic cryptographic hash
function (denoted by H). Specific instantiations of HMAC need to
define a particular hash function. Current candidates for such hash
functions include SHA-1 [SHA], MD5 [MD5], RIPEMD-128/160 [RIPEMD].
These different realizations of HMAC will be denoted by HMAC-SHA1,
HMAC-MD5, HMAC-RIPEMD, etc.
Note: To the date of writing of this document MD5 and SHA-1 are the
most widely used cryptographic hash functions. MD5 has been recently
shown to be vulnerable to collision search attacks [Dobb]. This
attack and other currently known weaknesses of MD5 do not compromise
the use of MD5 within HMAC as specified in this document (see
[Dobb]); however, SHA-1 appears to be a cryptographically stronger
function. To this date, MD5 can be considered for use in HMAC for
applications where the superior performance of MD5 is critical. In
any case, implementers and users need to be aware of possible
cryptanalytic developments regarding any of these cryptographic hash
functions, and the eventual need to replace the underlying hash
function. (See section 6 for more information on the security of
HMAC.)
Krawczyk, et. al. Informational