RFC 3378 (rfc3378) - Page 1 of 9
EtherIP: Tunneling Ethernet Frames in IP Datagrams
Alternative Format: Original Text Document
Network Working Group R. Housley
Request for Comments: 3378 RSA Laboratories
Category: Informational S. Hollenbeck
VeriSign, Inc.
September 2002
EtherIP: Tunneling Ethernet Frames in IP Datagrams
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Abstract
This document describes the EtherIP, an early tunneling protocol, to
provide informational and historical context for the assignment of IP
protocol 97. EtherIP tunnels Ethernet and IEEE 802.3 media access
control frames in IP datagrams so that non-IP traffic can traverse an
IP internet. The protocol is very lightweight, and it does not
provide protection against infinite loops.
1. Introduction
EtherIP was first designed and developed in 1991. This document was
written to document the protocol for informational purposes and to
provide historical context for the assignment of IP protocol 97 by
IANA.
The IETF Layer Two Tunneling Protocol Extensions (L2TPEXT) Working
Group and IETF Pseudo Wire Emulation Edge-to-Edge (PWE3) Working
Group are developing protocols that overcome the deficiencies of
EtherIP. In general, the standards track protocols produced by these
IETF working groups should be used instead of EtherIP.
The EtherIP protocol is used to tunnel Ethernet [DIX] and IEEE 802.3
[CSMA/CD] media access control (MAC) frames (including IEEE 802.1Q
[VLAN] datagrams) across an IP internet. Tunneling is usually
performed when the layer three protocol carried in the MAC frames is
not IP or when encryption obscures the layer three protocol control
information needed for routing. EtherIP may be implemented in an end
station to enable tunneling for that single station, or it may be
implemented in a bridge-like station to enable tunneling for multiple
stations connected to a particular local area network (LAN) segment.
Housley & Hollenbeck Informational