Mandelbrot set
<mathematics, graphics> (After its discoverer,
Benoit Mandelbrot) The set of all complex numbers c such that
| z[N] | < 2
for arbitrarily large values of N, where
z[0] = 0 z[n+1] = z[n]^2 + c
The Mandelbrot set is usually displayed as an Argand diagram, giving each point a colour which depends on the largest N for which | z[N] | < 2, up to some maximum N which is used for the points in the set (for which N is infinite). These points are traditionally coloured black.
The Mandelbrot set is the best known example of a
fractal - it includes smaller versions of itself which can be explored to arbitrary levels of detail.
The Fractal Microscope (http://www.ncsa.uiuc.edu/Edu/Fractal/Fractal_Home.html/).