RFC 2412 (rfc2412) - Page 2 of 55


The OAKLEY Key Determination Protocol



Alternative Format: Original Text Document



RFC 2412         The OAKLEY Key Determination Protocol     November 1998


   Because OAKLEY is a generic key exchange protocol, and because the
   keys that it generates might be used for encrypting data with a long
   privacy lifetime, 20 years or more, it is important that the
   algorithms underlying the protocol be able to ensure the security of
   the keys for that period of time, based on the best prediction
   capabilities available for seeing into the mathematical future.  The
   protocol therefore has two options for adding to the difficulties
   faced by an attacker who has a large amount of recorded key exchange
   traffic at his disposal (a passive attacker).  These options are
   useful for deriving keys which will be used for encryption.

   The OAKLEY protocol is related to STS, sharing the similarity of
   authenticating the Diffie-Hellman exponentials and using them for
   determining a shared key, and also of achieving Perfect Forward
   Secrecy for the shared key, but it differs from the STS protocol in
   several ways.

      The first is the addition of a weak address validation mechanism
      ("cookies", described by Phil Karn in the Photuris key exchange
      protocol work in progress) to help avoid denial of service
      attacks.

      The second extension is to allow the two parties to select
      mutually agreeable supporting algorithms for the protocol: the
      encryption method, the key derivation method, and the
      authentication method.

      Thirdly, the authentication does not depend on encryption using
      the Diffie-Hellman exponentials; instead, the authentication
      validates the binding of the exponentials to the identities of the
      parties.

      The protocol does not require the two parties compute the shared
      exponentials prior to authentication.

      This protocol adds additional security to the derivation of keys
      meant for use with encryption (as opposed to authentication) by
      including a dependence on an additional algorithm.  The derivation
      of keys for encryption is made to depend not only on the Diffie-
      Hellman algorithm, but also on the cryptographic method used to
      securely authenticate the communicating parties to each other.

      Finally, this protocol explicitly defines how the two parties can
      select the mathematical structures (group representation and
      operation) for performing the Diffie-Hellman algorithm; they can
      use standard groups or define their own.  User-defined groups
      provide an additional degree of long-term security.




Orman                        Informational